Plonk: Smoothed particle hydrodynamics analysis and visualization with Python
نویسندگان
چکیده
منابع مشابه
Visualization of Smoothed Particle Hydrodynamics for Astrophysics
Scientific visualization still presents a number of challenges. Effective visualization straddles several problem domains the data structures needed to support visualization of large data sets, rendering techniques for fast and interactive display of this data, and enough understanding of the data involved to construct visualizations that provide real insight into the problem. Data from Smoothe...
متن کاملPySPH: A Python Framework for Smoothed Particle Hydrodynamics
[PySPH] is a Python-based open source parallel framework for Smoothed Particle Hydrodynamics (SPH) simulations. It is distributed under a BSD license. The performance critical parts are implemented in [Cython]. The framework provides a load balanced, parallel execution of solvers. It is designed to be easy to extend. In this paper we describe the architecture of PySPH and how it can be used. At...
متن کاملIncompressible smoothed particle hydrodynamics
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the...
متن کاملSmoothed particle hydrodynamics
In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied. 0034-4885/05/081703+57$90.00 © 2005 IOP Publishing Ltd Printed in the UK 1703
متن کاملSmoothed Particle Hydrodynamics :
We investigate the core mass distribution (CMD) resulting from numerical models of turbulent fragmentation of molecular clouds. In particular we study its dependence on the sonic rms Mach numberMs. We analyze simulations withMs ranging from 1 to 15 to show that, asMs increases, the number of cores increases as well, while their average mass decreases. This stems from the fact that high Mach num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Open Source Software
سال: 2019
ISSN: 2475-9066
DOI: 10.21105/joss.01884